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ABSTRACT

Motivation: An effective docking algorithm for antibody–protein anti-

gen complex prediction is an important first step toward design of

biologics and vaccines. We have recently developed a new class of

knowledge-based interaction potentials called Decoys as the

Reference State (DARS) and incorporated DARS into the docking pro-

gram PIPER based on the fast Fourier transform correlation approach.

Although PIPER was the best performer in the latest rounds of the

CAPRI protein docking experiment, it is much less accurate for dock-

ing antibody–protein antigen pairs than other types of complexes, in

spite of incorporating sequence-based information on the location of

the paratope. Analysis of antibody–protein antigen complexes has re-

vealed an inherent asymmetry within these interfaces. Specifically,

phenylalanine, tryptophan and tyrosine residues highly populate the

paratope of the antibody but not the epitope of the antigen.

Results: Since this asymmetry cannot be adequately modeled using a

symmetric pairwise potential, we have removed the usual assumption

of symmetry. Interaction statistics were extracted from antibody–pro-

tein complexes under the assumption that a particular atom on the

antibody is different from the same atom on the antigen protein.

The use of the new potential significantly improves the performance

of docking for antibody–protein antigen complexes, even without any

sequence information on the location of the paratope. We note that the

asymmetric potential captures the effects of the multi-body inter-

actions inherent to the complex environment in the antibody–protein

antigen interface.

Availability: The method is implemented in the ClusPro protein dock-

ing server, available at http://cluspro.bu.edu.

Contact: midas@bu.edu or vajda@bu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on November 20, 2011; revised on July 27, 2012; accepted

on August 2, 2012

1 INTRODUCTION

Protein–protein docking methods have significantly improved in

the last few years. According to the last round of the blind pro-
tein docking experiment CAPRI (Lensink and Wodak, 2010),

automated protein docking servers performed comparably well

with the top human predictor groups, without the use of biolo-

gical information. In particular, our protein docking server

ClusPro was the top protein docking server, as well as within

the top 10 of all predictors. Despite these improvements, the

docking of an antibody to its protein antigen, an important

first step toward computational design of biologics and vaccines,

remains particularly challenging for both ClusPro and other

methods (Ponomarenko and Bourne, 2007; Vajda, 2005). We

note that although we focus on interactions between antibodies

and proteins, for simplicity we define the problem as antibody–

antigen docking. It is no doubt that the relatively weak perform-

ance represents the state of art in protein docking. In fact,

Ponomarenko and Bourne (2007) found ClusPro to better pre-

dict epitopes than methods that have been specifically developed

for such predictions, although they used an earlier and less ac-

curate version of the server. It is easy to see why docking anti-

gen–antibody pairs is much more difficult than docking

inhibitors to enzymes. Enzyme–inhibitor complexes generally ex-

hibit excellent surface complementarity, with the convex inhibi-

tor matching the concave binding site of the enzyme (Vajda,

2005). Most of the native enzyme–inhibitor interfaces also have

favorable hydrophobic and polar interactions, which facilitate

docking and scoring (Vajda, 2005). In contrast, the interfaces

in antibody–antigen complexes are mostly flat and less hydro-

phobic (Lo Conte et al., 1999). The flat interface implies that

searching for surface complementarity provides little help in

docking. In addition, the polar interactions are more sensitive

to atomic positions than the hydrophobic ones, and hence scor-

ing based on molecular mechanics energy functions including

electrostatics becomes less reliable due to the inevitable conform-

ational differences between free and bound protein structures.

Thus, it is very important to develop scoring functions that ac-

count for these specific properties of the interface and can help

finding near-native complex structures.
It was shown by several groups that the inclusion of

structure-based potentials in the energy function used for the

docking can significantly improve performance (Chen et al.,

2003; Kozakov et al., 2006; Ravikant and Elber, 2010). Here,

we describe the development and testing of an accurate pairwise

interaction potential specific to antibody–antigen complexes.

Based on statistical mechanics, structure-based potentials are

traditionally derived from the ‘inverse Boltzmann’ principle

(Sippl, 1993), assuming that frequently observed structural

states are low energy states. In the first-order approximation,
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molecular interactions can be decomposed as the sum of pairwise

atom–atom interactions. The energy of interaction can be

written as:

"IJ ¼ �kTln
pobsIJ

prefIJ

� �
,

where k is the Boltzmann constant, T the temperature, pobsIJ the

probability of interactions between atoms of types I and J in an

observed set (e.g. crystal structures) and prefIJ is the probability of

atoms of types I and J being within the interaction distance, in a

state without any atom-type-specific interactions, the ‘reference

state’. We have recently reported a pairwise interaction potential

called Decoys as the Reference State (DARS) (Chuang et al.,

2008). The idea of DARS is generating a large set of docked

conformations with good shape complementarity but without

accounting for atom types, and using the frequency of inter-

actions extracted from these DARS. In principle, the resulting

potential is ideal for finding near-native conformations among

structures obtained by docking and can be combined with other

energy terms to be used directly in docking calculations.

Accordingly, we incorporated DARS into the energy function

used by our docking program PIPER (Kozakov et al., 2006).

Based on the fast Fourier transform (FFT) correlation approach,

PIPER can perform global docking of unbound protein struc-

tures without any a priori information on the structure of the

complex and was the best performing method in the latest round

of the CAPRI protein docking experiment (Lensink and Wodak,

2010). DARS improved the docking results for all classes of

complexes. For enzyme–inhibitor pairs, DARS provides both

excellent discrimination and docking results, even with very

small decoy sets. With a few exceptions, the DARS docking re-

sults are also good for complexes that occur in signal transduc-

tion pathways. However, for antibody–antigen pairs, results were

substantially worse than for other types of complexes, although

DARS performed slightly better than some earlier interaction

potentials. The results were poor even when the location of the

complementarity determining regions (CDRs) on the antibody

was determined based on sequence information and the search

was constrained to include the CDRs in the interface.
Analyzing the potential sources of poor performance for anti-

body–antigen pairs, we arrived at the conclusions that the main

problem is the inherent asymmetry of the interface in these types

of complexes (Chuang et al., 2008). We recall that the pairwise

structure-based potentials to model protein–protein interactions

automatically assume the symmetry of interactions between

atoms on the two sides of the interface, i.e. that

"IrecJlig ¼ "JrecIlig ,

where Irec, Jrec are atom types on the receptor and Ilig, Jlig are

atom types on the ligand. However, it is easy to show that the

assumption of symmetry limits the performance of the potential

in antibody–antigen docking. As shown in Figure 1, there is

usually a large, hydrophobic region on the paratope of the anti-

body, containing a large number of tyrosines, tryptophans and

phenylalanines, thus these three residues occur with high fre-

quency in the interface. This is supported by residue interaction

statistics gathered on the antibody–protein interaction dataset, as

shown in Supplementary Table S1. Based on these statistics,

interactions between the atoms of these residues and any other

atom on the other side of the interface appear to be favorable,

resulting in a large negative pairwise energy term. Addition of

this term will improve the location of the interface and thus the

near-native conformation if these residues are on the paratope of

the antibody. However, the tyrosines, tryptophans and phenyl-

alanines on the antigen side are not found in the epitope with any

higher frequency than on any other part of the protein. Thus, a

favorable interaction term for these residues on the antigen leads

to false positives, incorrectly predicting that any region of the

antigen rich in these residues is likely to be part of the epitope,

which is generally not the case.

The concept of symmetry is generally accepted for pairwise

potentials because interaction forces between two isolated

atoms or molecules are symmetric. Most structure-based poten-

tials have been derived from folded protein structures (Lu and

Skolnick, 2001; Miyazawa and Jernigan, 1985; Rojnuckarin and

Subramaniam, 1999; Skolnick et al., 1997) where the symmetric

pairwise assumption, ignoring multi-body interaction terms, was

the natural first choice. These potentials proved to be successful

for folding and, later on, for docking, so the assumption of sym-

metry has not been questioned. As discussed, antibody–antigen

interactions clearly do not fit this framework. Although the de-

viation from symmetry may be surprising, it is important to note

that interactions between atoms are not pairwise, and the latter

assumption is just a convenient approximation. Thus, the

Fig. 1. Patches of maximum hydrophobicity in an antibody–antigen

complex. The structure is Jel42 Fab fragment complexed with HPr

(PDB code 2jel). The antibody fragment is shown as the white solid

model, with magenta patches representing the regions with maximum

hydrophobicity. The HPr antigen is shown as a gray cartoon, with

dark red patches as regions of maximum hydrophobicity. In the figure,

the antibody CDR is oriented upward, showing that the CDR region

includes strongly hydrophobic patches, but these do not interact with

regions of maximum hydrophobicity on the HPr antigen
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pairwise energy terms, extracted from the frequency of specific
interactions observed in protein structures or complexes, repre-

sent an empirical measure of interaction strength rather than real

physical forces. Developing multi-body interaction potentials

would be a more rigorous approach than restricting consider-

ation to pairwise interaction, but we have far from enough

data for the parameterization of such potentials.

Here, we suggest an alternative approach, simply removing the
requirement of interaction symmetry. The resulting potential pre-

serves the general form and computational simplicity of statis-

tical potentials, but to a certain degree accounts for the local

environment of an atom and thus introduces some elements of

multi-body potentials. To our knowledge, no asymmetric poten-

tials have been previously reported for predicting protein–protein

interactions. We describe the development of the asymmetric

DARS-type potential, called ADARS, based on a non-

redundant dataset of antibody–antigen complexes extracted

from the Protein Data Bank (PDB). ADARS has been integrated

into the energy function used in the docking program PIPER,

and tested on an antibody–antigen docking benchmark. We

demonstrate significant improvements in the docking results,

when compared with earlier symmetric potentials. The resulting

antibody–antigen docking protocol is included in our ClusPro

protein docking server, which is freely available.

2 METHODS

2.1 Potential development

2.1.1 Selection of non-redundant antibody–antigen dataset A

DARS potential requires defining the native training set and the reference

set from which to extract the atom-type contacts. For training our ori-

ginal DARS potential, we used the non-redundant database of native

protein–protein complexes from Glaser et al. (2001). This set includes

621 protein interfaces from 492 PDB entries. As previously noted

(Chuang et al., 2008), the set was biased toward homodimers and

enzyme–inhibitor complexes that tend to have excellent pairing of hydro-

phobic regions on the two sides of the interface, which is not the case in

antibody–antigen interactions.

For the antibody–antigen-specific DARS, we have extracted all the

records containing antibodies from the PDB that were solved by either

X-ray crystallography (with resolution up to 4 Å) or nuclear magnetic

resonance. After removing unbound antibody structures, we ended up

with 199 antibody–protein complexes. We assign the antibody chains as

the receptor. We clustered all the ligands with over 30% sequence iden-

tity. The resulting clusters were manually inspected for redundancy in

terms of different binding modes [49 Å ligand root mean square deviation

(RMSD)] or different antibody sequence (430% sequence difference at

the interface). We have also retained some antibody–antibody complexes,

such as anti-idiotype complexes, which mimic antibody–antigen com-

plexes. We then removed from our training set all complexes in the pro-

tein–protein docking benchmark (Hwang et al., 2008) set and the ones

similar to them, based on redundancy criteria described above. What

remained was a set of 99 non-redundant complexes, a training set appro-

priate for our purpose. All heteroatoms and water molecules were

removed prior to analysis. The final list of complexes is provided as

Supplementary Material (Table S2).

2.1.2 Atom-type selection Such a small training set provides lim-

ited statistics of interactions between atoms on the two sides of the inter-

face. In order to avoid an underdetermined statistical problem when

estimating the atom pair interactions energies, we reduced the number

of atom types. As already mentioned, hydrophobicity is major driving

force in antibody/antigen interactions, and tyrosine, tryptophan and

phenylalanine occur with high frequency in the paratope (Halperin

et al., 2002); hence, from the 18 atom types of DARS, we selected

FC�, YC� and LC� that represent the atom types mainly involved in

these interactions. As defined by Zhang et al. (1997), FC� includes all

the ring carbon atoms in Phe and Trp, as well as the three proximal

phenolic ring atoms in Tyr (C� ,C�1 and C�2). YC� denotes the three

distal phenolic ring atoms in Tyr that appear to be influenced by the

terminal hydroxyl group and thus need to be treated separately. The

terminal carbon atoms in Ile, Leu, Met and Val constitute the third

group, LC�. All other atoms are placed into a single ‘other’ atom type.

Using just four types ensures that all training data bins will be well

populated. The choice of atom types is based on our understanding of

antibody–antigen interactions and the statistics of interactions observed

in the training set (shown in Supplementary Tables S1 and S3). Although

the decision is supported by the results described below—it is by no

means optimized. For example, it was observed that there is high fre-

quency of Ser on antibody interfaces (Clark et al., 2006). Thus, adding

specific serine atom types would be a natural choice once more antibody–

antigen complexes are available for constructing the potential.

2.1.3 Reference set The main feature of DARS is the selection of a

set of complexes as the reference set. From each of these, a set of docked

structures is generated, using shape complementarity as the docking

energy function. For our reference set, we have randomly selected 15 of

these 100 antibody–antigen complexes. During docking, only the Fv

region of the antibody (antigen-binding fragment of the antibody that

includes variable domains of the heavy and light chains) is considered.

For each complex, we use the van der Waals energy function of PIPER to

generate 5000 shape complementarity decoys. (PIPER is described in

more detail below.) We then determined the reference state probability

based on the frequencies of atom–atom interactions in the decoy set

(Chuang et al., 2008):

Pref
IJ ¼

�refIJP
I, J

�refIJ

,

where �refIJ is the number of contacts between atoms of types I on the

receptor and J on the ligand in the decoy ensemble. The other properties

of the antibody–antigen-specific DARS, the contact cutoff distance and

the atom-type definitions, were chosen identically to the original DARS.

For the contact cutoff distance, atom i of the receptor (the antibody) is

considered to interact with atom j of the ligand (the antigen) if their

distance rij is56 Å.

2.1.4 Description of the potentials compared To better illustrate

the effect of introducing asymmetry to pairwise potential, and the role of

antibody–antigen-specific training data, we have compared three poten-

tials in this article. The first is the previously developed general DARS

(Chuang et al., 2008). The second potential, symmetric antibody–antigen

DARS (aDARS), uses four atom types (YC�, FC�, LC� and ‘other’) and

is trained on the antibody–antigen training set, but retains the symmetry

constraint "IJ ¼ "JI. Finally, the symmetry constraint is removed in the

antibody–antigen-specific asymmetric DARS (aADARS), and thus we

effectively have four antibody atom types (antibody YC�, FC�, LC�

and ‘other’), interacting with four antigen atom types (antigen

YC�, FC�, LC� and ‘other’).

2.2 Antibody–antigen docking benchmark

To test our antibody–antigen-specific DARS potential, we use the anti-

body–antigen complexes from protein–protein docking benchmark

(Hwang et al., 2008). Some complexes were excluded as follows.

The complex 2hmi was removed because the bound complex contains

2610

R.Brenke et al.



DNA. The complex 1e4k was removed because it is not an antibody–anti-

gen complex: the ‘antigen’ is actually an Fc receptor, binding the Fc

region of the antibody. Finally, three complexes (1i9r, 1k4c and 2vis)

were removed as they are complexes of antigen multimers with multiple

antibodies, and thus beyond the scope of pairwise docking considered in

this article. The remaining 20 cases were used as our test set. As noted

above, we have removed all complexes of this benchmark from our train-

ing set to prevent biasing our results.

2.3 Docking

For docking, we used our previously developed protein–protein docking

program PIPER (Kozakov et al., 2006). PIPER is an FFT-based docking

program that uses a structure-based pairwise potential as one component

of its energy function. The total energy is the sum of terms representing

shape complementarity, electrostatic and desolvation contributions, the

last described by the pairwise potential (Kozakov et al., 2006; Chuang

et al., 2008):

E ¼ Evdw þ w3Eelec þ w4Epair,

Evdw ¼ w1Erep þ w2Eattr,

Eelec ¼
XNr

i¼1

XNl

j¼1

qiqj

�
r2ij þD2exp

�r2ij
4D2

 ! !1
2

,

Epair ¼
XNr

i¼1

XNl

j¼1

"aðiÞaðjÞ,

where Nr and Nl denote the numbers of atoms in the receptor and the

ligand, respectively. The Evdw term is a stepwise implementation of the

van der Waals energy, with Eattr and Erep representing its attractive and

repulsive components, respectively. Eelec is the Coulombic electrostatic

energy and Epair denotes the pairwise potential described above. "aðiÞaðjÞ
is the potential energy between two atoms of types I¼ a(i) and J¼ a(j).

That is, a(x) is the atom-type mapping of atom number x. rij is the dis-

tance between atom i and j in the protein. D ¼ maxiðr
vdw
i Þ, where r

vdw
i is

Van der Waals radii of atom i. PIPER (Kozakov et al., 2006) is able to

incorporate symmetric pairwise potentials within its energy function.

Approximating the interaction matrix by its eigenvectors corresponding

to the few dominant eigenvalues results in an energy expression written as

the sum of a few correlation functions, which can be solved by repeated

FFT calculations. Unfortunately, it is not possible to perform eigenvalue

decomposition of the N�N asymmetric matrix Masym. However, we can

create an equivalent symmetric potential of the size 2N� 2N as shown

below. In this representation, the first N types correspond to the atoms of

the antibody, and the subsequent N to the atoms of the antigen. It is

easily seen that the interaction energy from the asymmetric matrix is

equivalent to the proposed symmetric form. This makes it possible to

use ADARS within PIPER.

Msym ¼
0 Masym

MT
asym 0

� �
:

The translational space of the receptor and ligand energy functions is

sampled at a step size of 1.0 Å and the rotational space is sampled ap-

proximately every 5�, resulting in 70000 rotations of the ligand. To pre-

vent bias of the grid placement, each structure is randomly rotated and

translated prior to docking.

For each complex, the best scoring 1000 structures are clustered

(Kozakov et al., 2005) to produce a number of predictions. We also

tested the potentials in conjunction with the commonly used method of

‘masking’ the non-CDR (i.e. not CDR) parts of the antibody. This ef-

fectively limits the docking results to complexes in which the interface

includes the CDRs. The residues to mask were determined by Kabat’s

definition of the CDR (see http://www.bioinf.org.uk/abs/), with three

additional residues in each direction remaining unmasked (Kozakov

et al., 2006; Chuang et al., 2008).The weighting coefficients w1,w2,w3

are selected based on calorimetric considerations (Chuang et al., 2008).

The w4 coefficient in the energy expression is optimally selected for the

particular potential, and hence is different for DARS, aADARS and

aDARS (Chuang et al., 2008).

2.4 Assessment of the results

For result assessment, we consider the model a hit if ligand atoms within

10 Å of the receptor in the crystal are within 10 Å RMSD in the model (to

ignore the motion of that part of the ligand which is not participating in

the interaction). Although 10 Å RMSD may appear to be very large, one

has to keep in mind that the prime aim of the FFT sampling and clus-

tering steps is to determine the region of interest in the conformational

space, and the structures in this region can be further refined by methods

that account at least for side chain and possibly for some backbone

flexibility. In a recent paper describing our results in the CAPRI experi-

ment (Kozakov et al., 2010), we showed that such models can indeed be

further refined to obtain structures of high quality.

3 RESULTS AND DISCUSSION

3.1 ADARS potential

The antibody–aADARS potential is shown in Table 1. The

strongest signal in this potential is from the antibody YC� type

(i.e. the distal ring atoms of Tyr), interacting atom types

FC�, LC� and other on the antigen. This shows that it is ener-

getically favorable for the YC� type to be in the paratope regard-

less of what is in the epitope. The only interaction of YC� atoms

that are not very favorable are with another atom of the same

type. Also strong is the FC�–FC� interaction between Tyr rings.

The strongest repulsive potentials are coming from the antibody

hydrophobic LC� atoms interacting with almost any of the anti-

gen atoms. Thus, the potential illustrates that the somewhat

hydrophobic YC� atoms of Tyr and the more hydrophobic

FC� atoms of Phe, Trp and Tyr have a high probability of

being at the antibody interface regardless of the residues at the

antigen interface, in good agreement with the high frequency of

these residues in the CDR regions.

3.2 Docking results

To demonstrate the effects of the asymmetric potential and anti-

body–antigen-specific training data, we have compared three po-

tentials. The first is the generic DARS potential, which compares

favorably to a number of other potentials (Chuang et al., 2008),

and used with PIPER for docking helped us to be the best

Table 1. AaDARS potential

Antibody antigen

YC� FC� LC� Other

YC� �0.34 �1.48 �1.45 �1.37

FC� �0.14 �0.72 �0.45 �0.46

LC� 0.38 0.19 0.51 0.86

Other 0.03 �0.08 0.27 0.22
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performing predictor group in the latest rounds of CAPRI

(Lensink and Wodak, 2010). The second potential is the sym-

metric DARS, but restricted to the four atoms types discussed,

and trained on antibody–antigen data (aDARS). Finally, the

third potential, referred to as aADARS, is the asymmetric

DARS, with four atom types, and trained on the same anti-

body–antigen data. To evaluate their performance, each of

these three potentials was incorporated as the pairwise compo-

nent of the energy function used in PIPER for docking (see

Section 2) (Kozakov et al., 2006), followed by clustering of the

top 1000 results (Kozakov et al., 2005), as implemented in our

protein–protein docking server ClusPro (Comeau et al., 2004).

The potentials were tested on the antibody–antigen complexes of

the protein docking benchmark (Hwang et al., 2008). In addition

to complexes, the benchmark also includes an unbound structure

for at least one of the component proteins. The unbound/un-

bound or unbound/bound complexes have been used as provided

in the benchmark (Hwang et al., 2008). We note that complexes

close to the ones in the benchmark set were removed from the

training set, following the rules described in Section 2.
In Table 2, the rank of the first cluster with510 Å C� RMSD

between the bound and predicted ligand structures is reported

along with the RMSD of that cluster representative. The absence

of a number indicates that no cluster with510 Å C� RMSD is

predicted. The first column of Table 2 shows the PDB ID of the

bound complex. The second column shows whether the case is

bound/unbound or unbound/unbound. The third column

(DARS) shows the results of docking using the original DARS

potential. The fourth column (DARS*) is the same as the third,

but with the non-CDR regions of the antibody masked, making

them unavailable for the interface. The fifth column (aDARS)

shows the results of docking using the antibody–antigen-specific

symmetric DARS potential. The sixth column (ADARS*) is the

same as the fifth, but with the non-CDR regions of the antibody

masked. Analogously, the seventh column (aADARS) shows the

results of docking using the aADARS potential and the eights

column (aADARS*) is the same as the seventh, but with the

non-CDR of the antibody masked. It is clear from Table 2 that

aADARS performs better than the other potentials that all are

unable to find near-native structures for a number of complexes,

whereas using aADARS or aADARS*, this occurs only once.
All methods fail to generate any near-native structure for the

complex 1bgx. In principle, docking in this case should not be

more difficult than in many others, as the backbone conform-

ational change between the bound and unbound structures is

moderate (1.48 Å interface C� RMSD). Although there are a

few large side-chain clashes, these are not expected to lead to

major problems as the energy function in PIPER is ‘soft’

enough to account for potential overlaps. However, the most

significant feature of this case is the large size of the antigen

(Taq DNA Polymerase). FFT-based methods generally provide

better performance when the ligand is the smaller molecule. Due

to limitations of the current implementation of PIPER with

asymmetric potentials, the antibody is required to be the recep-

tor, which is appropriate in the majority of the benchmark cases

as antibodies are relatively large. Since in docking the complex,

we translate and rotate a large molecule using a predefined grid,

Table 2. Docking using DARS, aDARS and aADARS potentials

DARS DARS* aDARS aDARS* aADARS aADARS*

complex Componentsa Rank (rmsd) Rank (rmsd) Rank (rmsd) Rank (rmsd) Rank (rmsd) Rank (rmsd)

1ahw u/u — — 3 (5.34) 5 (5.92) 2 (5.33) 24 (5.74) 6 (5.52)

1bgx u/u — — — — — — — — — — — —

1bj1 b/u 4 (4.24) 3 (4.33) 4 (6.28) 1 (6.28) 1 (5.40) 1 (4.96)

1bvk u/u — — — — — — — — 28 (5.42) 21 (5.42)

1dqj u/u — — 3 (9.91) 1 (9.64) 1 (9.64) 10 (9.64) 1 (9.51)

1e6j u/u 2 (2.21) 1 (4.97) 1 (8.34) 1 (8.01) 1 (7.05) 1 (8.40)

1fsk b/u 1 (1.98) 1 (2.57) 2 (1.62) 1 (1.62) 1 (1.62) 1 (1.62)

1iqd b/u 1 (7.15) 2 (8.93) 7 (7.20) 9 (7.20) 1 (5.39) 9 (4.74)

1jps u/u — — 1 (4.57) 5 (5.73) 7 (4.39) 14 (7.71) 6 (5.73)

1kxq b/u 1 (3.51) 5 (5.39) 2 (3.08) 6 (7.09) 2 (3.87) 2 (7.90)

1mlc u/u 16 (1.90) 12 (4.36) 20 (8.95) 22 (9.21) 6 (9.23) 20 (8.90)

1nca b/u — — 17 (1.81) — — 25 (1.93) 30 (2.11) 5 (2.10)

1nsn b/u — — — — — — — — 13 (6.89) 28 (4.00)

1qfw:hl b/u 1 (3.32) 2 (4.83) 4 (2.76) 1 (3.10) 2 (8.38) 1 (8.38)

1qfw:im b/u — — 18 (3.12) 9 (2.96) 8 (2.96) 7 (6.73) 4 (5.88)

1vfb u/u — — 6 (8.05) 7 (8.76) 4 (8.72) 3 (5.87) 1 (8.31)

1wej u/u — — 13 (1.56) 2 (4.02) 2 (4.02) 1 (3.55) 1 (2.78)

2fd6 u/u 16 (4.08) 8 (4.30) — — 11 (1.95) 5 (2.50) 5 (1.95)

2i25 u/u — — 18 (3.02) — — 3 (7.18) 8 (5.77) 7 (4.08)

2jel b/u — — 3 (3.44) 5 (4.60) 2 (2.77) 2 (2.77) 2 (2.77)

au/u, unbound–unbound; b/u, bound–unbound.

*Masking of non-CDR of the antibody.
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the failure may be attributed to insufficient sampling rather than

to problems with the scoring function.

The performance of the methods is summarized in Table 3. To

understand these results, note that PIPER retains the 1000 lowest

energy conformations from the FFT-based search, clusters the

retained structures using the pairwise RMSD as the distance

measure and selects a number of the largest clusters for refine-

ment and further analysis. Table 3 shows the success rates for

retaining 1, 10 or 30 clusters, ranked based on cluster size. Here,

success is defined as having a structure with510 Å C� RMSD.

Note that retaining the top 10 clusters is aligned to the CAPRI

rules that allow 10 models to be submitted for each docking

target. The case of retaining 30 clusters is considered, because

this is the maximum number of clusters that are feasible to pro-

cess by more detailed refinement methods (Kozakov et al., 2008).

According to the results in Table 3, using the original

DARS potential PIPER fails to generate near-native structures

in the top 30 clusters for 60% of the complexes in the

benchmark, and thus is not suited for antibody–antigen docking.

Masking the non-CDR regions of the antibody (see DARSa)

improves the results by decreasing the number of failures to

15%. A symmetric potential trained on antigen–antibody

complex data (i.e. aDARS) improves the results relative to the

original DARS, however the number of missed targets stays

high, and masking is still required to reduce the number of

failures. As the last two columns of Table 3 show, the asym-

metric potential trained on antibody–antigen complexes

(aADARSa) yields substantial improvement. In summary, the

new potential is a substantial improvement over the original

DARS potential.
Considering the CAPRI success criterion (at least one accept-

able model among the 10 best predictions), using the bound

structure of the antibody does not substantially change perform-

ance. The success rates are 89% and 80% for the bound/un-

bound and unbound/unbound docking problems, respectively,

(in the latter case ignoring the problematic 1bgx case discussed

above).
It should be noted that the steps described above do not

include high-resolution refinement, due to time constraints.

However, such refinement can usually improve the quality

of the model, as we have repeatedly shown in the CAPRI

experiment (Kozakov et al., 2010). We have recently

demonstrated (Kozakov et al., 2008) that an initial global

FFT-based search is highly complementary to a subsequent

local refinement using Monte Carlo-based approaches, as

implemented in Rosetta (Gray et al., 2003; Sircar and Gray,

2010).

4 CONCLUSION

Antibody–antigen complexes present a challenge for protein–

protein docking due to their less favorable desolvation free ener-

gies and more planar interfaces when compared with enzyme–

inhibitor complexes. The less favorable desolvation free energies

are due in part to their less hydrophobic interfaces. Interestingly,

there are a number of hydrophobic atoms in the interface, but

mostly on the antibody side, whereas the epitope on the antigen

may be less hydrophobic. In fact, this should be the case, as

antibodies can be developed against almost any surface of a

given protein, in spite of some of these surfaces being fairly

polar. To take advantage of these properties, we have developed

an aADARS potential. This potential shows that the atom types

YC� and FC� from Tyr, Trp and Phe residues (Zhang et al.,

1997) have a high probability of being in the paratope and fa-

vorably contribute to the interaction energy, regardless of the

type of the atoms of the epitope they interact with.
To test our newly developed potential, we have performed a

docking test on the antibody–antigen complexes of the protein–

protein docking benchmark (Hwang et al., 2008). Our results

demonstrate that this potential is generally quite successful in

discriminating near-native structures of antibody–antigen com-

plexes. In fact, the potential is able to discriminate the paratope

of the antibody using only biophysical methods, i.e. adding a

priori information on the location of the CDR regions did not

improve the docking results. We believe that more data (i.e. more

resolved crystal structures of antibody–antigen complexes)

would improve the potential even further. As we noted, there

were relatively few contacts for a number of the atom types.

More structures would ameliorate this problem, possibly allow-

ing for the introduction of additional atom types and thus

enabling the development of more detailed antibody–antigen po-

tentials. We note that the asymmetric properties of interfaces are

not constrained to antibody–antigen complexes. In particular,

many signal transduction complexes of the docking benchmark

set exhibit similar features. This is a topic of our current research.
Another direction of research in docking antibodies which

needs improvement is the ability to work with the models

rather than experimental structures. Despite the fact that anti-

body models are usually extremely precise, the quality of docking

results tends to drop drastically when using models rather than

real structures. Accordingly, CAPRI targets that involve docking

based on homology models (Lensink and Wodak, 2010) are not

modeled well. The reason for this drop in performance can be

explained by the fact that standards for modeling proteins and

the quality of the structures needed for docking are very differ-

ent. For example, we know that side-chains placement is ex-

tremely important for protein docking and it is totally ignored

in assessment of quality for protein models. Also side-chain

placement strongly depends on the backbone and slight deviation

of the backbone, which will be unnoticeable in the protein model

quality, will strongly affect side-chain distribution, and hence the

docking results.

Table 3. Success rate of DARS, aDARS and aADARS potentials

Rank DARS

(%)

DARS*

(%)

aDARS

(%)

aDARS*

(%)

aADARS

(%)

aADARS*

(%)

Top 1 20 15 10 25 30 35

Top 10 30 60 65 70 70 80

Top 30 40 85 70 85 95 95

Miss 60 15 30 15 5 5

*Masking of non-CDR of the antibody.
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AVAILABILITY AND IMPLEMENTATION

We have added the antibody–antigen docking mode to our pro-
tein–protein docking server ClusPro (Comeau et al., 2007).

The server is hosted at ‘http://cluspro.bu.edu.’ ClusPro is freely
available to the academic community. For convenience of job
tracking, and privacy users can create an account, however it is

not required. To access the server without login users should
either click the link ‘Use the server without benefits of your
own account’ or use the direct link ‘http://cluspro.bu.edu/nou
sername.php.’
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